Dry Scrubber NID Humidity Measurement and Control

EUEC 2018

Jeff Bossong, H₂O
jeff.bossong@h2oop.com
847-991-7488
Objective of Presentation

- Plant Description
- Data Analysis
- Sensor Technology
- Questions / Discussion
GE Power / Alstom NID

- Cleaned Flue Gas
- Fabric Filter
- Fluidizing Trough
- Recycled Fly Ash and Lime
- Byproduct Disposal
- Fresh Hydrated Lime + Recycled Fly Ash & Lime
- Recycle Rotary Feeder
GE Power / Alstom NID

NID Process

NID DFGD Design

- Large gas flow range
- Unitized compartment design
- Compact footprint
- Gas cooling by thin film evaporation
- Very high solids recirculation
- Fluid bed / dust recirculated continuously
- No external hydrator
- No external dust recycle
- No slurry handling
- Free flowing dry end product
GE Power / Alstom NID

Modular Design

Modularization Offers Design and Layout Flexibility
Process Description

- Boiler - 2 Hot Sided Precipitators – Split Gas
- Air Heaters A & B - Activated Carbon
- NID Inlet Plenum (ducts recombine from AC before inlet)
 - SO$_2$ inlet monitor
- 4x4 Module System - 8 NID Reactors / 8 PJFF
 - 7 modules in service / 1 standby at full load
 - 4 modules at base load
- NID Outlet
 - Outlet temperature measured after each module damper
 - All eight modules recombine and feed outlet duct
- Outlet Duct
- ID Fan / Stack2 H2O sensors installed (January 2016) across duct
Process Description

Control

• Hydrated lime, air flow, recycled FF solids and moisture
• Inlet / outlet SO2 CEM controls quicklime to hydrators
• Mixer water addition controls ADP
• Higher humidity increases scrubbing efficiency
• Accurate humidity control optimizes lime usage
• Protects baghouse from blinding and corrosion
• 40 degree approach to dew point
 • Average of the two sensors is the control point
 • Adiabatic saturation temperature can also be calculated
• No maintenance since installation on either unit
Installation Picture – Inside Duct
Installation Picture – Inside Duct
Moisture Variables at Probes

• Ambient Humidity
 • Jan 1, 2017 – 0.8% volume
 • July 1, 2017 – 2.25% volume
 • Relates to a 4 degree dew point difference at scrubber inlet

• Load Condition
• Soot Blows
• Coal Moisture
• Tube Leak
• Scrubber Approach to Dewpoint
<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Dew Point Temp Avg °F</th>
<th>Gross MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/20/2017 13:00</td>
<td>118.8</td>
<td>277.2</td>
</tr>
<tr>
<td>6/20/2017 14:00</td>
<td>124.0</td>
<td>324.3</td>
</tr>
<tr>
<td>6/20/2017 15:00</td>
<td>124.8</td>
<td>344.3</td>
</tr>
<tr>
<td>6/20/2017 16:00</td>
<td>125.0</td>
<td>371.6</td>
</tr>
<tr>
<td>6/20/2017 17:00</td>
<td>125.5</td>
<td>432.4</td>
</tr>
<tr>
<td>6/20/2017 18:00</td>
<td>125.7</td>
<td>437.2</td>
</tr>
<tr>
<td>6/20/2017 19:00</td>
<td>126.0</td>
<td>437.9</td>
</tr>
<tr>
<td>6/20/2017 20:00</td>
<td>126.8</td>
<td>437.6</td>
</tr>
<tr>
<td>6/20/2017 21:00</td>
<td>127.1</td>
<td>438.7</td>
</tr>
<tr>
<td>6/20/2017 22:00</td>
<td>126.6</td>
<td>423.6</td>
</tr>
<tr>
<td>6/20/2017 23:00</td>
<td>126.3</td>
<td>412.1</td>
</tr>
<tr>
<td>6/21/2017 00:00</td>
<td>126.0</td>
<td>385.9</td>
</tr>
<tr>
<td>6/21/2017 01:00</td>
<td>125.0</td>
<td>312.5</td>
</tr>
<tr>
<td>6/21/2017 02:00</td>
<td>121.7</td>
<td>251.5</td>
</tr>
<tr>
<td>6/21/2017 03:00</td>
<td>119.8</td>
<td>224.7</td>
</tr>
<tr>
<td>6/21/2017 04:00</td>
<td>119.8</td>
<td>213.2</td>
</tr>
<tr>
<td>6/21/2017 05:00</td>
<td>119.7</td>
<td>213.6</td>
</tr>
<tr>
<td>6/21/2017 06:00</td>
<td>120.4</td>
<td>214.2</td>
</tr>
<tr>
<td>6/21/2017 07:00</td>
<td>121.1</td>
<td>220.7</td>
</tr>
<tr>
<td>6/21/2017 08:00</td>
<td>120.7</td>
<td>218.4</td>
</tr>
<tr>
<td>6/21/2017 09:00</td>
<td>121.2</td>
<td>251.3</td>
</tr>
<tr>
<td>6/21/2017 10:00</td>
<td>125.1</td>
<td>365.8</td>
</tr>
<tr>
<td>6/21/2017 11:00</td>
<td>125.8</td>
<td>506.5</td>
</tr>
<tr>
<td>6/21/2017 12:00</td>
<td>126.8</td>
<td>533.6</td>
</tr>
<tr>
<td>6/21/2017 13:00</td>
<td>126.9</td>
<td>527.1</td>
</tr>
<tr>
<td>6/21/2017 14:00</td>
<td>126.5</td>
<td>526.9</td>
</tr>
<tr>
<td>6/21/2017 15:00</td>
<td>126.8</td>
<td>527.1</td>
</tr>
<tr>
<td>6/21/2017 16:00</td>
<td>127.1</td>
<td>526.7</td>
</tr>
<tr>
<td>6/21/2017 17:00</td>
<td>127.5</td>
<td>530.8</td>
</tr>
<tr>
<td>6/21/2017 18:00</td>
<td>113.1</td>
<td>227.9</td>
</tr>
</tbody>
</table>
ADP (blue) vs SO2 Removal Rate (red)
Scrubber Metrics

• Dew point varied by 15 degrees over the course of 2017
• $672,000 in 2017 lime costs
• Every 5 degrees – 5% savings
• If assuming a safe dew point / the savings is $100,800
• Initially started at 65 degree approach to dew point due to learning the system
• Now at 40 degree approach to dew point
• Tube leak detection at scrubber inlet
• No corrosion seen during outages
Tube Leak Occurrence

<table>
<thead>
<tr>
<th>Date</th>
<th>NID</th>
<th>NID</th>
<th>Inlet</th>
<th>Outlet</th>
<th>NID</th>
<th>Outlet</th>
<th>NID</th>
<th>Outlet</th>
<th>NID</th>
<th>Outlet</th>
<th>NID</th>
<th>Outlet</th>
<th>NID</th>
<th>Outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M8</td>
<td>M8</td>
<td>Rate</td>
<td>Rate</td>
<td>M8</td>
<td>Rate</td>
<td>M8</td>
<td>Rate</td>
<td>M8</td>
<td>Rate</td>
<td>M8</td>
<td>Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MST A</td>
<td>MST B</td>
<td>%</td>
<td>%</td>
<td>MST A</td>
<td>MST B</td>
<td>MST A</td>
<td>MST B</td>
<td>MST A</td>
<td>MST B</td>
<td>MST A</td>
<td>MST B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/7/2017 9:00</td>
<td>16.09</td>
<td>14.75</td>
<td>15.43</td>
<td>0.42</td>
<td>172.8</td>
<td>127.7</td>
<td>347.7</td>
<td>67.5</td>
<td>45.10</td>
<td>0.31</td>
<td>254.6</td>
<td>78.21</td>
<td>96.29</td>
<td>156</td>
</tr>
<tr>
<td>10/7/2017 10:00</td>
<td>15.87</td>
<td>14.58</td>
<td>15.22</td>
<td>0.41</td>
<td>171.9</td>
<td>127.0</td>
<td>363.4</td>
<td>67.1</td>
<td>44.94</td>
<td>0.30</td>
<td>254.6</td>
<td>77.75</td>
<td>95.14</td>
<td>154</td>
</tr>
<tr>
<td>10/7/2017 11:00</td>
<td>16.37</td>
<td>14.72</td>
<td>15.56</td>
<td>0.40</td>
<td>171.8</td>
<td>127.0</td>
<td>469.0</td>
<td>67.0</td>
<td>44.77</td>
<td>0.31</td>
<td>254.7</td>
<td>77.67</td>
<td>97.25</td>
<td>157.3</td>
</tr>
<tr>
<td>10/7/2017 12:00</td>
<td>38.41</td>
<td>35.23</td>
<td>36.82</td>
<td>0.09</td>
<td>184.1</td>
<td>158.5</td>
<td>169.0</td>
<td>66.6</td>
<td>25.60</td>
<td>0.00</td>
<td>76.2</td>
<td>84.52</td>
<td>225.8</td>
<td>372.4</td>
</tr>
</tbody>
</table>

Note: The table above provides data on various parameters such as NID, NID Outlet, MST A, MST B, SO2 Inlet Rate, SO2 Outlet Rate, NID Inlet Temp Avg °F, NID Outlet Temp Avg °F, NID M8 Dew Point Temp Avg °F, FC, Gross MW, Ambient °F, Approach to dewpoint °F, SO2 removal, Nid M8 Lime Lb/Hr, Outlet temp Cnty, abs humidity, vapo pressure, sRH, and Delta T of Scrubber.
H2O Technology

• Absolute Humidity Sensor
 • Direct measurement of the water molecule
 • Dipole moment measuring effect
 • In-situ measurement

• Advantages
 • High temperature operation – 1000 F
 • High particulate operation
 • Minimal maintenance
 • Corrosive and condensing environments are not an issue
 • Accurate
 • Robust (sensor life is 10 years minimum)
Installation Requirements

• Probe sizes – 490 mm or 1,470 mm lengths
• Flange - 4 inch, 150 lb. ANSI
• Power – 110V, 5 Amps
• Output Signal – 4..20 mA isolated
• Measurement unit – g/m3 corrected to 0C at process pressure
• Other Units – Equations are provided (i.e., dew point, RH, humidity ratio)
Questions / Discussion